

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
PHYSICAL SC	ENCE	0652/31
Paper 3 (Exten	ded)	October/November 2011
		1 hour 15 minutes
Candidates ans	wer on the Question Paper.	
No Additional M	laterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

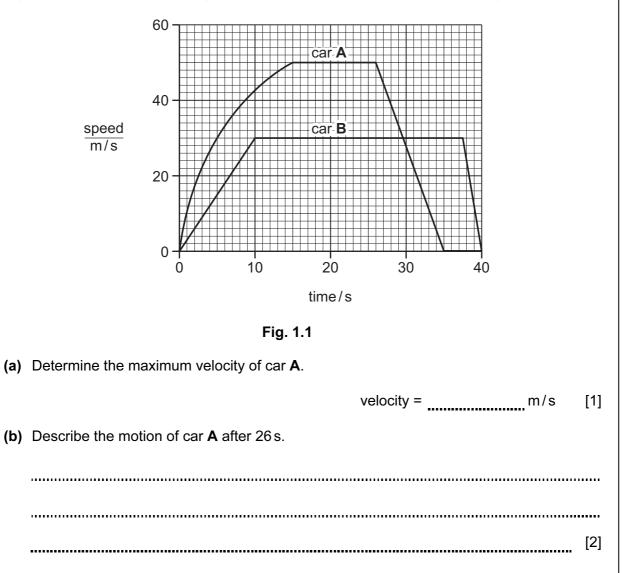
Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of **19** printed pages and **1** blank page.

1 Two cars are being tested on a straight level track.

Fig. 1.1 shows the speed-time graphs for the two cars, each of mass 1500 kg.

https://xtremepape.rs/

(c) (i)	Use the graph to calculate the acceleration of car ${f B}$ during the first 10 s of the terms of terms of terms of the terms of ter	st.	For Examiner's Use
(ii)	acceleration = Calculate the resultant force on car B during this period.	[2]	
(iii)	force = Explain why the engine must provide a greater force than that given in your answ to (c)(ii) .	[2] wer	
	the two cars approach the end of the track they brake and come to rest.	[2]	
	blain which car produces the greater braking force.		

2 Fig. 2.1 shows a catalytic converter, which is part of a car exhaust system.

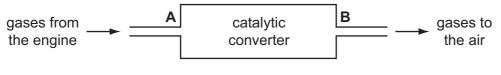


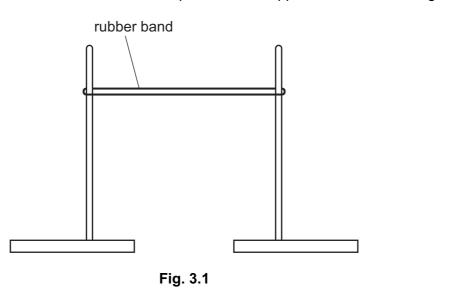
Fig. 2.1

Scientists analyse the gases at **A** and at **B**. Their results are shown in Table 2.1.

gas	percentage at A	percentage at B
carbon dioxide	8.0	9.2
carbon monoxide	5.0	3.8
hydrogen	2.0	0.8
nitrogen	71.0	71.3
nitrogen monoxide	0.3	0.0
oxygen	4.0	2.8
water vapour	9.0	10.7

Table 2.1

(a) The scientists conclude that in the catalytic converter nitrogen monoxide is converted to nitrogen by reaction with carbon monoxide.

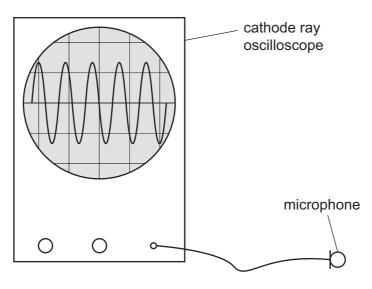

- (i) Write a balanced equation for this reaction. Use the data in Table 2.1 to help you.
 - [2]
- (ii) Use this reaction to explain the meaning of the terms *reduced* and *oxidised*.

(iii) Explain how the results in Table 2.1 support the conclusion that this reaction takes place in the catalytic converter.

	(iv)	Use data from Table 2.1 to suggest another reaction that takes place in the catalytic converter.	For Examiner's Use
		[1]	
(h)	Dor		
(u)		ts of the car exhaust system are made from galvanised steel.	
	(i)	Explain how galvanising prevents steel from rusting.	
		[3]	
	(ii)	Suggest why galvanising is a better method of rust prevention than painting.	
		[1]	
		[1]	

3 A student experiments with a rubber band. She stretches it between two retort stands and notices that it produces a sound when she plucks it. The apparatus is shown in Fig. 3.1.

6



(a) Explain why the sound is produced.

[2]

https://xtremepape.rs/

(b) The student sets up a cathode ray oscilloscope and a microphone, as shown in Fig. 3.2, to display the sound trace produced by the apparatus in Fig. 3.1.

The time base is set to 2.5 ms/division.

Calculate the frequency of the sound wave.

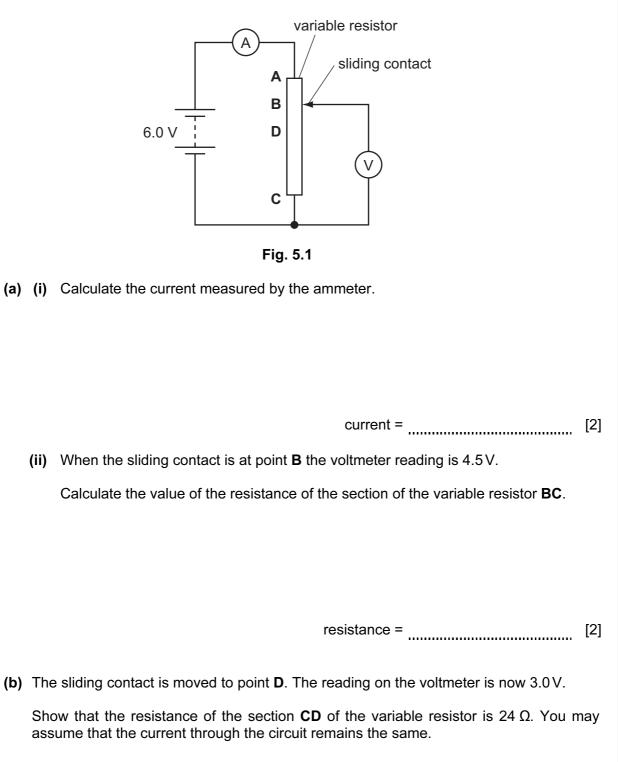
Show your working in the box.

frequency = _____Hz [3]

7

For

Examiner's Use


4	Silv	ver sa	alts are used in photography.	For
	(a)	The	e action of light on silver bromide releases an electron.	Examiner's Use
			Ag⁺Br⁻ —→ Ag⁺ + Br + e⁻	
		(i)	How does light enable this reaction to take place?	
			[1]	
		(ii)	The silver ion is converted into a silver atom.	
			Why is this said to be a reduction reaction?	
			[1]	
		(iii)	Write an ionic equation to show this reduction of a silver ion.	
			[1]	
	(b)	bro	ver bromide can be made from the reaction between silver nitrate and potassium mide. $gNO_3(aq) + KBr(aq) \longrightarrow AgBr(s) + KNO_3(aq)$	
			Describe how you would prepare a pure, dry sample of silver bromide from solutions of silver nitrate and potassium bromide.	
			[4]	

(ii) What mass of silver bromide could be made from 5.0g of silver nitrate?
 [relative atomic masses, A_r: Ag, 108; Br, 80; N, 14; O, 16]
 Show your working in the box.

For Examiner's Use

mass of silver bromide = _____ g [3]

5 Fig. 5.1 shows an electric circuit. The e.m.f. of the battery is 6.0 V. The total resistance of the variable resistor 48Ω . Examiner's

For

Use

6 When calcium carbonate is heated strongly it decomposes to form calcium oxide and carbon dioxide.

For Examiner's Use

 $CaCO_3 \longrightarrow CaO + CO_2$

(a) Calculate the volume of carbon dioxide, measured at room temperature and pressure, produced when 2.5 g of calcium carbonate is decomposed.

[The volume of one mole of any gas is 24 dm³ at room temperature and pressure.]

Show your working in the box.

volume of carbon dioxide = _____ dm³ [3]

(b) Calcium oxide reacts with hydrochloric acid to form a salt.

 $CaO + 2HCl \longrightarrow CaCl_2 + H_2O$

In this reaction calcium oxide is acting as a base.

(i) Use this reaction to define the terms *acid* and *base* in terms of proton transfer.

acid ______base _____[2]

(ii) Calcium oxide reacts with acids but not with alkalis. It is classified as a basic oxide.Complete Table 6.1 to classify three other oxides.

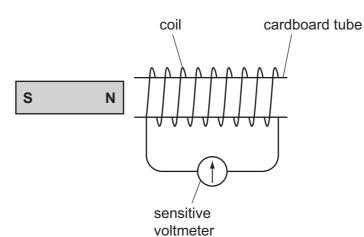
name	formula	property	type of oxide
calcium oxide	CaO	reacts with acids but not alkalis	basic
aluminium oxide	Al ₂ O ₃	reacts with both acids and alkalis	
carbon dioxide	CO ₂	reacts with alkalis but not acids	
nitrogen monoxide	NO	reacts with neither acids nor alkalis	

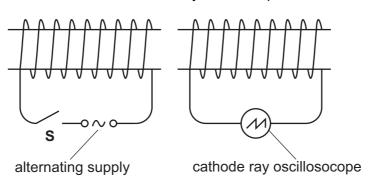
Table 6.1

[3]

© UCLES 2011

7 Fig. 7.1 shows a magnet and a coil which is connected to a sensitive voltmeter.




Fig. 7.1

(a) (i) Describe what you would observe as the magnet is moved away from the coil.
[2]
(ii) Explain this observation using the theory of electromagnetic induction.
[2]
(b) The magnet is now moved towards the coil.
Describe what you would observe.
[1]

https://xtremepape.rs/

(c) The magnet is now replaced with a similar coil connected to an alternating supply. The original coil is connected to a cathode ray oscilloscope. This is shown in Fig. 7.2.

15

For Examiner's Use

State and explain what is observed when the switch S is closed.

[2]

8 Table 8.1 contains data about elements in Group 0 of the Periodic Table.

density of gas boiling proton element symbol in kg/m³ number point /°C 2 -269 0.17 helium He 10 -246 0.84 Ne neon Ar 18 -186 1.67 argon krypton Kr 36 -1523.50

Table 8.1

- (a) (i) What name is given to the elements in Group 0?
 - [1]
 - (ii) Use information from Table 8.1 to describe a trend in **one** physical property shown by this group of elements.

		[2]
(iii)	Describe a chemical property common to all elements in this group.	
()		[4]
		[1]
(iv)	Xenon is the next member of Group 0 after krypton.	
	Predict the density of xenon.	

density = kg/m^3 [1]

© UCLES 2011

(b)	(i)	Draw a diagram to show	v the electron arrangement in an atom o	f argon.
-----	-----	------------------------	---	----------

For
Examiner's
Use

[2]

(ii) A calcium ion has the same electron arrangement as an argon atom.

Give the **name** of, and the **charge** on, another ion apart from calcium that has the same electron arrangement as an argon atom.

	name	charge [2]
(iii)	State how a calcium ion is formed from a calcium ator	n.
		[2]

A student is investigating the cooling of a cup of tea. For Examiner's Use She makes the tea using water first boiled in a kettle. As the tea cools she notices that some of it evaporates. (a) (i) State one similarity between evaporation and boiling. [1] (ii) Explain the difference between evaporation and boiling. [2] (b) The graph in Fig. 9.1 shows how the temperature of the tea changes with time. 100 temperature/°C 50 0 2 6 4 0 time/minutes Fig. 9.1 Use the graph to estimate room temperature. room temperature = [1] °C (c) Explain, in terms of the molecular kinetic theory, what happens to the tea as it cools. [2]

9

BLANK PAGE

19

	0	4 He Helium	20 Neon 40 Argon	84 Krypton 131	Radon Xenon	175 Luetuun 71 Lawrencium 103
		× ×	91 10	39	86 54	
	⋝		19 9 Fluorine 9 35.5 01 17 Chlorrine	80 Br 35 127 I	At Astatine 85	173 Yb 70 Nobelium 102
	>		16 8 Oxygen 8 32 32 0 0 0 16 sultur	79 Selenium 34 128 Te	52 Polonium 84	169 Thulium 69 Mendelevium 101
	>		Nitrogen 7 31 7 15	75 AS 33 Arsenic 33 T22 Sb	Antimony 51 209 Bismuth 83	167 Erbium 68 Framium 100
DATA SHEET The Periodic Table of the Elements Group	≥		6 Carbon 6 28 28 28 14 Silicon	73 Germanium 32 119 Sn	50 Tin 207 PD 82 Lead	165 Holmium 67 Einsteinium 99
	≡		11 5 Boron 5 27 27 Aurminium 13	70 Ga 31 115 In	49 204 T1 81 Thallum	162 Dysprosium 66 Cf Cf
				65 Zinc 30 Zinc 112 Cd	201 201 Mercury 80	159 Tb 65 Berkelum 97
				64 Cu 29 29 708 Ag	47 197 Au 79 Gold	157 Gadoinium 64 CT 96 Curium
				28 Nickel 106 Pdd	Patadium 46 195 Platinum 78	152 Eu 63 63 63 Am 95 Americium
iodic Ta Gr			_	59 Co 27 103 Rh	Rhođium 45 192 I r 17 Indium	150 Samarium 62 Putonium 94
The Per		¹ Hydrogen		56 Fe 101 Ru	Ruthenhum 44 190 OSmlum 76	Prometrium 61 Neptunium 03
				55 Manganese 25 TC	Tachnetum 43 186 Re Rhenium 75	144 Neodymium 60 238 U Uranium 92
				52 Cr Chromium 24 96 Mo	42 184 184 V 74 74	Praseodymium 59 Protactinium 91
				51 Contact Nation	Al Niobium 181 Tantaum 73	140 Certum 58 232 232 232 7 horium 90
					2 Zirconium 178 HAfhium 72	lic mass ool
				45 Scandium 21 89 89	39 ^{Ythrium} 139 139 Lanthanum 57 ★ Actinum 89 Actinum	2 2 2
	=		9 Beryllium 4 24 Magnesium	40 Calcium 20 88 Sr	88 Radium 38 Partium 38 Partium 56 Partium 56 Partium 56 Partium 56 Radium 88 Partium 88 Partium 98 Partium 99	noic
			7 Lithium 23 Sodium	39 Potassium 85 Rb	Rubidium 133 CS Caesium 5 Caesium 5 Francium	1 La

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

0652/31/O/N/11

© UCLES 2011